The symmetries that govern the world of elementary particles at the most elementary level could be radically different from what has so far been thought. This surprising conclusion emerges from new work published by theoreticians from Warsaw and Potsdam. The scheme they posit unifies all the forces of nature in a way that is consistent with existing observations and anticipates the existence of new particles with unusual properties that may even be present in our close environs.

For a half-century, physicists have been trying to construct a theory that unites all four fundamental forces of nature, describes the known elementary particles and predicts the existence of new ones. So far, these attempts have not found experimental confirmation, and the Standard Model—an incomplete, but surprisingly effective theoretical construct—is still the best description of the quantum world. In a recent paper in Physical Review Letters, Prof. Krzysztof Meissner from the Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, and Prof. Hermann Nicolai from the Max-Planck-Institut für Gravitationsphysik in Potsdam have presented a new scheme generalizing the Standard Model that incorporates gravitation into the description. The new model applies a kind of symmetry not previously used in the description of elementary particles.

To read more, click here.