A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg/Germany presents evidence of the amplification of optical phonons in a solid by intense terahertz laser pulses. These light bursts excite atomic vibrations to very large amplitudes, where their response to the driving electric field becomes nonlinear and conventional description fails to predict their behavior.
In this new realm, fundamental material properties usually considered constant are modulated in time and act as a source for phonon amplification. The paper, "Parametric Amplification of Optical Phonons" by Andrea Cartella et al., has been published in the PNAS.
The amplification of light dramatically changed science and technology in the 20th century. This path, which began in 1960 with the invention of the laser, still has such a remarkable impact that the 2018 Nobel Prize in Physics was awarded "for groundbreaking inventions in the field of laser physics." Indeed, the amplification of other fundamental excitations like phonons or magnons is likely to have an equally transformative impact on modern condensed matter physics and technology.
Read more at: https://phys.org/news/2018-11-terahertz-laser-pulses-amplify-optical.html#jCp
A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg/Germany presents evidence of the amplification of optical phonons in a solid by intense terahertz laser pulses. These light bursts excite atomic vibrations to very large amplitudes, where their response to the driving electric field becomes nonlinear and conventional description fails to predict their behavior.
In this new realm, fundamental material properties usually considered constant are modulated in time and act as a source for phonon amplification. The paper, "Parametric Amplification of Optical Phonons" by Andrea Cartella et al., has been published in the PNAS.
The amplification of light dramatically changed science and technology in the 20th century. This path, which began in 1960 with the invention of the laser, still has such a remarkable impact that the 2018 Nobel Prize in Physics was awarded "for groundbreaking inventions in the field of laser physics." Indeed, the amplification of other fundamental excitations like phonons or magnons is likely to have an equally transformative impact on modern condensed matter physics and technology.