Black holes are remarkable entities. On the one hand, they have now become familiar astrophysical objects that have been observed in large numbers and in many ways: we have evidence of stellar-mass holes dancing around with a companion star, of gigantic holes at the center of galaxies pulling in spiraling disks of matter, and of black hole pairs merging in a spray of gravitational waves. All of this is beautifully accounted for by Einstein’s century-old theory of general relativity. Yet, on the other hand, black holes remain highly mysterious. We see matter falling into them, but we are in the dark about what happens to this matter when it reaches the center of the hole.

Abhay Ashtekar and Javier Olmedo at Pennsylvania State University in University Park and Parampreet Singh at Louisiana State University, Baton Rouge, have taken a step toward answering this question [1]. They have shown that loop quantum gravity—a candidate theory for providing a quantum-mechanical description of gravity—predicts that spacetime continues across the center of the hole into a new region that exists in the future and has the geometry of the interior of a white hole. A white hole is the time-reversed image of a black hole: in it, matter can only move outwards. The passage “across the center” into a future region is counterintuitive; it is possible thanks to the strong distortion of the spacetime geometry inside the hole that is allowed by general relativity. This result supports a hypothesis under investigation by numerous research groups: the future of all black holes may be to convert into a real white hole, from which the matter that has fallen inside can bounce out. However, existing theories have not been able to fully show a way for this bounce to happen. That loop quantum gravity manages to do it is an indication that this theory has ripened enough to tackle real-world situations.

To read more, click here.