Different eras of civilization are defined by the discovery of new materials, as new materials drive new capabilities. And yet, identifying the best material for a given application—catalysts, light-harvesting structures, biodiagnostic labels, pharmaceuticals and electronic devices—is traditionally a slow and daunting task. The options are nearly infinite, particularly at the nanoscale (a nanometer is one-billionth of a meter) where material properties—optical, structural, electrical, mechanical and chemical—can significantly change, even at a fixed composition.
A new study published this week in the Proceedings of the National Academy of Sciences (PNAS) supports the efficacy of a potentially revolutionary new tool developed at Northwestern University to rapidly test millions (even billions) of nanoparticles to determine the best for a specific use.
"When utilizing traditional methods to identify new materials, we have barely scratched the surface of what is possible," said Northwestern's Chad A. Mirkin, the study's corresponding author and a world leader in nanotechnology research and its applications. "This research provides proof-of-concept—that this powerful approach to discovery science works."