Sudden bursts of heat that can damage the inner walls of tokamak fusion experiments are a hurdle that operators of the facilities must overcome. Such bursts, called "edge localized modes (ELMs)," occur in doughnut-shaped tokamak devices that house the hot, charged plasma that is used to replicate on Earth the power that drives the sun and other stars. Now researchers at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have directly observed a possible and previously unknown process that can trigger damaging ELMs.

Working together, physicists Ahmed Diallo, an experimentalist, and Julien Dominski, a theorist, pieced together data from the DIII-D National Fusion Facility that General Atomics operates for the DOE in San Diego, to uncover a trigger for a particular type of ELM that does not fit into present models of ELM plasma destabilization. Their findings could shed light on the variety of mechanisms leading to the onset of ELMs and could broaden the portfolio of ELM suppression tools. Understanding ELM physics is crucial to developing fusion facilities that can fuse light elements in the form of plasma -- the state of matter composed of free electrons and atomic nuclei -- to produce a virtually inexhaustible supply of energy to generate electricity.

To read more, click here.