Some iron-based superconductors could benefit from a tuneup, according to two studies by Rice University physicists and collaborators.
"Our work demonstrates a new design principle for tuning quantum materials to achieve unconventional superconductivity at higher temperatures," said Rice's Qimiao Si, the lead theoretical physicist on the studies, which investigate unusual patterns of superconductivity that have previously been reported in iron selenide.
"We show how nematicity, an unusual electronic order, can boost the chances that superconductivity will arise from electron-pairing in specific orbitals," said Si, director of the Rice Center for Quantum Materials (RCQM) and the Harry C. and Olga K. Wiess Professor of Physics and Astronomy. "Tuning materials to enhance this effect could foster superconductivity at higher temperatures."