An international research team led by the University of Liverpool and McMaster University has made a significant breakthrough in the search for new states of matter.
In a study published in the journal Nature Physics, researchers show that the perovskite-related metal oxide, TbInO3, exhibits a quantum spin liquid state, a long-sought-after and unusual state of matter.
Using cutting-edge experimental technologies, including inelastic neutron scattering and muon spectroscopy, researchers discovered that the exotic quantum state in TbInO3 emerges from the complexity of the local environment around the magnetic ions in the material, in this case, of the rare-earth element terbium.
The discovery came as a surprise to the team as TbInO3 is a material not expected to display such unusualmagneticbehaviour based on its crystal structure.
The quantum spin liquid state was theoretically proposed over forty years ago by the Nobel laureate Philip Anderson. In quantum spin liquids, magnetic moments behave like a liquid and do not freeze or order even at absolute zero, giving rise to several extraordinary materials properties.
Thematerialisation of quantum spin liquids is still widely contested. As such, the discovery and exploration of new materials that may host this state of matter are active areas of advanced materials research and have potential applications in the development of quantum computing.