A team of Cambridge researchers have found a way to control the sea of nuclei in semiconductor quantum dots so they can operate as a quantum memory device.
Quantum dots are crystals made up of thousands of atoms, and each of these atoms interacts magnetically with the trapped electron. If left alone to its own devices, this interaction of the electron with the nuclear spins, limits the usefulness of the electron as a quantum bit—a qubit.
Led by Professor Mete Atatüre, a Fellow at St John's College, University of Cambridge, the research group, located at the Cavendish Laboratory, exploit the laws of quantum physics and optics to investigate computing, sensing or communication applications.
Atatüre said: "Quantum dots offer an ideal interface, as mediated by light, to a system where the dynamics of individual interacting spins could be controlled and exploited. Because the nuclei randomly 'steal' information from the electron they have traditionally been an annoyance, but we have shown we can harness them as a resource."
Read more at: https://phys.org/news/2019-02-physicists-thousands-semiconductor-nuclei-quantum.html#jCp
A team of Cambridge researchers have found a way to control the sea of nuclei in semiconductor quantum dots so they can operate as a quantum memory device.
Quantum dots are crystals made up of thousands of atoms, and each of these atoms interacts magnetically with the trapped electron. If left alone to its own devices, this interaction of the electron with thenuclearspins, limits the usefulness of the electron as a quantum bit—a qubit.
Led by Professor Mete Atatüre, a Fellow at St John's College, University of Cambridge, the research group, located at the Cavendish Laboratory, exploit the laws of quantum physics and optics to investigate computing, sensing or communication applications.
Atatüre said: "Quantum dots offer an ideal interface, as mediated by light, to a system where the dynamics of individual interacting spins could be controlled and exploited. Because the nuclei randomly 'steal' information from the electron they have traditionally been an annoyance, but we have shown we can harness them as a resource."