The field of metamaterials involves designing complicated, composite structures, some of which can manipulate electromagnetic waves in ways that are impossible in naturally occurring materials.
For Nader Engheta of the University of Pennsylvania's School of Engineering and Applied Science, one of the loftier goals in this field has been to design metamaterials that can solve equations. This "photonic calculus" would work by encoding parameters into the properties of an incoming electromagnetic wave and sending it through a metamaterial device; once inside, the device's unique structure would manipulate the wave in such a way that it would exit encoded with the solution to a pre-set integral equation for that arbitrary input.
In a paper recently published in Science, Engheta and his team have demonstrated such a device for the first time.
To read more, click here.