The history of science is filled with stories of enthusiastic researchers slowly winning over skeptical colleagues to their point of view. Astrophysicist Scott Hughes can relate to these tales.
"For the first 15 or 16 years of my career I was speaking to astronomers, and I always had the impression that they were politely interested in what I had to say, but regarded me as a little bit of a wild-eyed enthusiast who was telling them about a herd of unicorns that my friends and I were raising," said Hughes.
"Now," he continued, "there are people who are going, 'Ooh, all those unicorns you found, can I use them to solve my problem? Do your unicorns have wings? Are they sparkly?'"
These unicorns are gravitational waves, an area of physics in which Hughes specializes. While working as postdoctoral researchers at UC Santa Barbara's Kavli Institute for Theoretical Physics (KITP), Hughes and his colleague, Daniel Holz, were among the first to propose using the phenomena, in combination with telescope-based observations, to measure the Hubble constant, a fundamental quantity involved in describing the expansion of the universe.