A new type of light-emitting diode has been developed at TU Wien. Light is produced from the radiative decay of exciton complexes in layers of just a few atoms thickness.
When particles bond in free space, they normally create atoms or molecules. However, much more exotic bonding states can be produced inside solid objects.
Researchers at TU Wien have now managed to utilise this: so-called "multi-particle exciton complexes" have been produced by applying electrical pulses to extremely thin layers of material made from tungsten and selenium or sulphur. These exciton clusters are bonding states made up of electrons and "holes" in the material and can be converted into light. The result is an innovative form of light-emitting diode in which the wavelength of the desired light can be controlled with high precision. These findings have now been published in the journal Nature Communications.
To read more, click here.