The ultimate degree of control for engineering would be the ability to create and manipulate materials at the most basic level, fabricating devices atom by atom with precise control.
Now, scientists at MIT, the University of Vienna, and several other institutions have taken a step in that direction, developing a method that can reposition atoms with a highly focused electron beam and control their exact location and bonding orientation. The finding could ultimately lead to new ways of making quantum computing devices or sensors, and usher in a new age of "atomic engineering," they say.
The advance is described today in the journal Science Advances, in a paper by MIT professor of nuclear science and engineering Ju Li, graduate student Cong Su, Professor Toma Susi of the University of Vienna, and 13 others at MIT, the University of Vienna, Oak Ridge National Laboratory, and in China, Ecuador, and Denmark.
"We're using a lot of the tools of nanotechnology," explains Li, who holds a joint appointment in materials science and engineering. But in the new research, those tools are being used to control processes that are yet an order of magnitude smaller. "The goal is to control one to a few hundred atoms, to control their positions, control their charge state, and control their electronic and nuclear spin states," he says.
To read more, click here.