As mysterious as the Italian scientist for which it is named, the Majorana particle is one of the most compelling quests in physics.
Its fame stems from its strange properties—it is the only particle that is its own antiparticle—and from its potential to be harnessed for future quantum computing.
In recent years, a handful of groups including a team at Princeton have reported finding the Majorana in various materials, but the challenge is how to manipulate it for quantum computation.
In a new study published this week, the Princeton team reports a way to control Majorana quasiparticles in a setting that also makes them more robust. The setting—which combines a superconductor and an exotic material called a topological insulator—makes Majoranas especially resilient against destruction by heat or vibrations from the outside environment. What is more, the team demonstrated a way to turn on or off the Majorana using small magnets integrated into the device. The report appeared in the journal Science.
To read more, click here.