Five years ago, Stanford postdoctoral scholar Momchil Minkov encountered a puzzle that he was impatient to solve. At the heart of his field of nonlinear optics are devices that change light from one color to another -- a process important for many technologies within telecommunications, computing and laser-based equipment and science. But Minkov wanted a device that also traps both colors of light, a complex feat that could vastly improve the efficiency of this light-changing process -- and he wanted it to be microscopic.

"I was first exposed to this problem by Dario Gerace from the University of Pavia in Italy, while I was doing my PhD in Switzerland. I tried to work on it then but it's very hard," Minkov said. "It has been in the back of my mind ever since. Occasionally, I would mention it to someone in my field and they would say it was near-impossible."

In order to prove the near-impossible was still possible, Minkov and Shanhui Fan, professor of electrical engineering at Stanford, developed guidelines for creating a crystal structure with an unconventional two-part form. The details of their solution were published Aug. 6 in Optica, with Gerace as co-author. Now, the team is beginning to build its theorized structure for experimental testing.

To read more, click here.