The field of topology or the study of how surfaces behave in different dimensions has profoundly influenced the current understanding of matter. The prime example is the topological insulator, which conducts electricity only on the surface while being completely insulating inside the bulk. Topological insulators behave like a metal, i.e., silver on the surface, but inside, it would behave like glass. These properties are defined using the conductivity or flow of electrons depicting whether there is a highway or a road-block for their motion. One major driver of future applications for topological insulators is in the field of spin-electronic devices since these electrons spin in unison, all aligned with each other while flowing on the surface.
Now electrical and computer engineering researchers have proposed for the first time that this same electronic conductivity influences the topological properties of light inside atomic matter.
"We showed there can exist a new topological phase of matter where light flows only on the edge of the atomic material but not inside it. There might exist some very special materials with this unique photonic property, and that's what we refer to as the quantum gyroelectric phase of matter," said Zubin Jacob, an associate professor of electrical and computer engineering at Purdue University.
To read more, click here.