A key requirement for future facilities that aim to capture and control on Earth the fusion energy that drives the sun and stars is accurate predictions of the pressure of the plasma -- the hot, charged gas that fuels fusion reactions inside doughnut-shaped tokamaks that house the reactions. Central to these predictions is forecasting the pressure that the scrape-off layer, the thin strip of gas at the edge of the plasma, exerts on the divertor -- the device that exhausts waste heat from fusion reactions.

Researchers at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have developed new insights into the physics governing the balance of pressure in the scrape-off layer. This balance must ensure that the pressure of the plasma throughout the tokamak is high enough to produce a largely self-heating fusion reaction. The balance must also limit the potentially damaging impact of heat and plasma particles that strike the divertor and other plasma-facing components of the tokamak.

"Previous simple assumptions about the balance of pressure in the scrape-off layer are incomplete," said PPPL physicist Michael Churchill, lead author of a Nuclear Fusion paper that describes the new findings. "The codes that simulate the scrape-off layer have often thrown away important aspects of the physics, and the field is starting to recognize this."

To read more, click here.