Researchers at Stanford University and the Department of Energy's SLAC National Accelerator Laboratory say they have found the first, long-sought proof that a decades-old scientific model of material behavior can be used to simulate and understand high-temperature superconductivity ­- an important step toward producing and controlling this puzzling phenomenon at will.

The simulations they ran, published in Science today, suggest that researchers might be able to toggle on and off in copper-based materials called cuprates by tweaking their chemistry so electrons hop from atom to atom in a particular pattern—as if hopping to the atom diagonally across the street rather than to the one next door.

"The big thing you want to know is how to make superconductors operate at and how to make superconductivity more robust," said study co-author Thomas Devereaux, director of the Stanford Institute for Materials and Energy Sciences (SIMES) at SLAC. "It's about finding the knobs you can turn to tip the balance in your favor."

To read more, click here.