How do you start a fusion reaction, the process that lights the sun and stars, on Earth? Like lighting a match to start a fire, you first produce plasma, the state of matter composed of free electrons and atomic nuclei that fuels fusion reactions, and raise it to temperatures rivaling the sun in hundreds of milliseconds.
Physicists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL), working with researchers at the Culham Centre for Fusion Energy (CCFE) in the United Kingdom, have constructed a simulation framework for developing and testing the plasma startup recipes for the National Spherical Torus Experiment-Upgrade (NSTX-U) at PPPL and the Mega Ampere Spherical Tokamak-Upgrade (MAST-U) at CCFE. "This is a tool to help an operator design a successful startup recipe before sitting down in the driver seat at NSTX-U or MAST-U," said physicist Devon Battaglia, who leads the team of operators on the NSTX-U experiment and is lead author of a paper describing the model in the journal Nuclear Fusion.
To read more, click here.