A new study outlines a method for detecting a speculative phenomenon that has long captured the imagination of sci-fi fans: wormholes, which form a passage between two separate regions of spacetime.
Such pathways could connect one area of our universe to a different time and/or place within our universe, or to a different universe altogether.
Whether wormholes exist is up for debate. But in a paper published on Oct. 10 in Physical Review D, physicists describe a technique for detecting these bridges.
The method focuses on spotting a wormhole around Sagittarius A*, an object that's thought to be a supermassive black hole at the heart of the Milky Way galaxy. While there's no evidence of a wormhole there, it's a good place to look for one because wormholes are expected to require extreme gravitational conditions, such as those present at supermassive black holes.
In the new paper, scientists write that if a wormhole does exist at Sagittarius A*, nearby stars would be influenced by the gravity of stars at the other end of the passage. As a result, it would be possible to detect the presence of a wormhole by searching for small deviations in the expected orbit of stars near Sagittarius A*.
To read more, click here.