Measurements on a superconducting material show an abrupt transition between a normal metal and a "strange" metal. The really strange thing, however, is that this abruptness disappears when the temperature falls. "We don't have any theoretical machinery for this," says theoretical physicist Jan Zaanen, coauthor of a Science article, "this is something that only a quantum computer can calculate."

Superconductors have provided surprises for over a century. In 1911, Heike Kamerlingh Onnes in Leiden discovered that mercury will conduct electrical current without any resistance at 4.2 Kelvin (4.5 degrees above absolute zero, or -273.15 degrees Celsius).

The phenomenon was explained only in 1957, and in 1986, a new type of superconductivity was discovered in complex copper oxides. This even survives at balmy temperatures of 92 Kelvin.

If it could be extended toward , superconductivity would mean unprecedented technology applications, but so far, the phenomenon has dodged a complete explanation. This not for a lack of effort by physicists such as Jan Zaanen, co-author and house theoretician with a group of Stanford experimental physicists who published an article in Science.

To read more, click here.