We calculate the pre-main-sequence HZ for stars of spectral classes F to M. The spatial distribution of liquid water and its change during the pre-main-sequence phase of protoplanetary systems is important in understanding how planets become habitable.

Such worlds are interesting targets for future missions because the coolest stars could provide habitable conditions for up to 2.5 billion years post-accretion. Moreover, for a given star type, planetary systems are more easily resolved because of higher pre-main-sequence stellar luminosities, resulting in larger planet to star separation for cool stars than is the case for the traditional main-sequence (MS) habitable zone (HZ). We use 1D radiative-convective climate and stellar evolutionary models to calculate pre-main-sequence HZ distances for F1 to M8 stellar types.

To read more, click here.