A team of researchers with members from several research facilities in the U.S. has unveiled a new type of solar cell based on single walled carbon nanotubes (SWCNTs). In their paper published in the journal Nano Letters, the team claims they have overcome limitations with such technology resulting in a solar cell that is two times as good at converting sunlight into power as other SWCNT based cells.

Scientists would like to use carbon nanotubes in solar cells because it would mean lighter panels, lower costs and easier to make products. They've been hampered, however, by the limited amount of power that such cells are able to generate. In this new effort the research team claims they've overcome the limitations of prior generations of SWCNTs by adding more chiralities to the nanotubes. Chiralities describe the way atoms are arranged in their hexagonal patterns—different patterns allow for absorbing different portions of the solar spectrum. Most prior efforts have used just one. This new team has added what they call polychiral SWCNTs to their cells which allows for capturing much more of the solar spectrum—most notably, in the near infrared, which other cells don't make use of at all.

To read more, click here.