"Powering a topological superconductor using a time crystal gives you more than the sum of its parts," says Jason Alicea, a researcher at California Institute of Technology (Caltech) in the US. The discovery of topological states has bred reams of research revealing new condensed matter and quantum physics, with potential technological applications in spintronics and quantum computing. Similarly, not long after the first observations of topological insulators in the late 2000s, the concepts of time crystals emerged, introducing another fresh arena for exploring new physics that could be exploited in precise timekeeping and quantum technologies.
Now, Alicea, alongside Aaron Chew, also at Caltech, and David Mross at the Weizmann Institute in Israel, report in Physical Review Letters theoretical investigations of systems that merge the two phenomena. "The intertwinement between time crystallinity and topological physics generates an interesting twist on excitations that are being pursued for fault-tolerant quantum computing," adds Alicea.
To read more, click here.