In 1935, Albert Einstein, working with Boris Podolsky and Nathan Rosen, grappled with a possibility revealed by the new laws of quantum physics: that two particles could be entangled, or correlated, even across vast distances.
The very next year, Alan Turing formulated the first general theory of computing and proved that there exists a problem that computers will never be able to solve.
These two ideas revolutionized their respective disciplines. They also seemed to have nothing to do with each other. But now a landmark proof has combined them while solving a raft of open problems in computer science, physics and mathematics.
The new proof establishes that quantum computers that calculate with entangled quantum bits or qubits, rather than classical 1s and 0s, can theoretically be used to verify answers to an incredibly vast set of problems. The correspondence between entanglement and computing came as a jolt to many researchers.
“It was a complete surprise,” said Miguel Navascués, who studies quantum physics at the Institute for Quantum Optics and Quantum Information in Vienna.
To read more, click here.