The first demonstration of graphene double quantum dots in which it is possible to control the number of electrons down to zero has been reported in Nano Letters. Far from an abstract academic stunt, the results could prove key to future implementations of quantum computing based on graphene. "Having exact information and control over the number of electrons in the dots is essential for spin based quantum information technology," says Luca Banszerus, a researcher at RWTH Aachen University in Germany and the first author of the paper reporting these results.
Although this level of control has been demonstrated in single quantum dots, this is the first demonstration in graphene double quantum dots, which are particularly useful as spin qubits. "Using a double dot heavily facilitates the readout of the electron's spin state and the implementation of quantum gates," Banszerus adds.
To read more, click here.