Dark matter has so far defied every type of detector designed to find it. Because of its huge gravitational footprint in space, we know dark matter must make up about 85 percent of the total mass of the universe, but we don't yet know what it's made of.
Several large experiments that hunt for dark matter have searched for signs of dark matter particles knocking into atomic nuclei via a process known as scattering, which can produce tiny flashes of light and other signals in these interactions.
Now a new study, led by researchers at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) and UC Berkeley, suggests new paths for catching the signals of dark matter particles that have their energy absorbed by these nuclei.
To read more, click here.