Light is emerging as the leading vehicle for information processing in computers and telecommunications as our need for energy efficiency and bandwidth increases.

Already the gold standard for intercontinental communication through fibre-optics, photons are replacing electrons as the main carriers of information throughout optical networks and into the very heart of computers themselves.

However, there remain substantial engineering barriers to complete this transformation. Industry-standard silicon circuits that support are more than an order of magnitude larger than modern electronic transistors. One solution is to 'compress' light using metallic waveguides—however this would not only require a new manufacturing infrastructure, but also the way light interacts with metals on chips means that photonic information is easily lost.

Now scientists in Australia and Germany have developed a modular method to design to help overcome these problems, combining the best of traditional chip design with photonic architecture in a hybrid structure. Their research is published today in Nature Communications.

To read more, click here.