In recent years, atomically flat layered materials have gained significant attention due to their prospects for building high-speed and low-power electronics. Best known among those materials is graphene, a single sheet of carbon atoms. Among the unique qualities of this family of materials is that they can be stacked on top of each other like Lego pieces to create artificial electronic materials.

However, while these van der Waals (vdW) heterostructures are critical to many scientific studies and technological applications of layered materials, efficient methods for building diverse vdW heterostructures are still lacking.

A team of researchers has found a versatile method for the construction of high-quality vdW heterostructures. The work is a collaboration between the laboratory of Davood Shahrjerdi, a professor of Electrical and Computer Engineering at the NYU Tandon School of Engineering and a faculty member of NYU WIRELESS; a group led by Javad Shabani at the Center for Quantum Phenomena, New York University; and Kenji Watanabe and Takashi Taniguchi of National Institute for Materials Science, Japan. Their study was published this week in Nature Communications.

To read more, click here