Traditional lenses—like the ones found in eyeglasses—are bulky, heavy and only focus light across a limited number of wavelengths. A new, ultrathin metalens developed by researchers at the University of California, Berkeley, uses an array of tiny, connected waveguides that resembles a fishnet to focus light at wavelengths spanning from the visible to the infrared with record-breaking efficiencies.
Unlike traditional lenses, the metalens is flat and compact and could be made small enough to fit inside increasingly miniaturized devices. The development could lead to game-changing advances in solar energy, virtual reality technology, medical imaging, information processing with light and other applications reliant upon optics.
"We have overcome what was regarded as a fundamental roadblock," said study principal investigator Boubacar Kanté, associate professor of electrical engineering and computer sciences at UC Berkeley and faculty scientist at Lawrence Berkeley National Laboratory. "This is, simply, the thinnest, most efficient, broadest band flat lens in the world."
To read more, click here.