**Gravitational-wave astronomy sounds like science fiction: two massive black holes swirl toward each other at a substantial fraction of the speed of light, radiating a burst of energy that outweighs the Sun in the form of gravitational waves. Millions of light years away, on Earth, we observe these ripples in the geometry of spacetime through the tiny deformations they produce in kilometers-long arms of laser interferometers [1]. One crucial ingredient in interpreting these gravitational-wave signals is having accurate theoretical predictions for the observed waveforms, obtained through the notoriously difficult task of solving Einstein’s field equations. Future progress depends upon significantly improving these theoretical calculations, as current predictions may not be accurate enough for upgraded detectors coming online in 2022 [2]. Inspired by particle physics, where everything is conceptually reduced to scattering processes between point particles, some theorists have begun to attack the binary black hole problem by studying a related problem in which two black holes fly near each other and are deflected (scattered) by their gravitational interaction. Within this framework, Thibault Damour from the Institute of Advanced Scientific Studies (IHÉS) in France and colleagues have sparked unanticipated progress in theoretical gravitational-wave predictions [3–5]. Their latest work shows that there exists a computational shortcut for the generic scattering problem by considering a special limit where one black hole weighs much less than the other.**

**click here.**