Rochester team demonstrates new way to control light as it moves through integrated circuits, paving a research avenue in communications, computing, and photonics research.
Photonic integrated circuits that use light instead of electricity for computing and signal processing promise greater speed, increased bandwidth, and greater energy efficiency than traditional circuits using electricity.
But they’re not yet small enough to compete in computing and other applications where electric circuits continue to reign.
Electrical engineers at the University of Rochester believe they’ve taken a major step in addressing the problem. Using a material widely adopted by photonics researchers, the Rochester team has created the smallest electro-optical modulator yet. The modulator is a key component of a photonics-based chip, controlling how light moves through its circuits.