In the late 18th century, the English potter Josiah Wedgwood invented a clay pyrometer to measure the temperature of his kilns—declaring the ability to measure higher degrees of heat “an important acquisition, both to the philosopher and the practical artist” [1]. With his son, Thomas, he showed that different materials at the same temperature glow the same color. Combined with the optical prism, Wedgwood’s thermal probe enabled newfound access to temperature and frequency information, giving humanity a new lease on light that ultimately challenged classical physics and led to the modern theory of quantum mechanics.
Today, new probes may once again allow humanity to make a technological leap—this time related to the bizarre notion that disparate and distant ions, photons, or other quantum objects can be highly correlated or “entangled.” Thanks to a new generation of tools to create, visualize, and manipulate quantum entanglement, we may soon see a revolution in sensing, communication, and computation. But if this technology is going to touch the lives of millions or more, then quantum mechanics must transition beyond a specialized physics course to a core requirement. Now is the time to consider the meaning of quantum literacy—specifically, what comprises a quantum canon and who needs to be versed in it?
To read more, click here.