You can feel it on your laptop and mobile phone. It's behind your refrigerator and office copy machine. While heat is desirable for appliances like a coffee maker, it can jeopardize the reliability and safety of electronic systems in other devices, causing premature failure at best and explosions at worst.

Active control of transport, as with thermal switches and thermal diodes, is important for a range of applications in heating and cooling, energy conversion, materials processing, and data storage. In practice, thermal diodes are highly desirable thermal components for many engineering applications because they allow energy systems to transfer heat to designated areas while also protecting them when the surrounding temperatures are too high.

Sheng Shen, a professor of mechanical engineering at Carnegie Mellon University, explores exotic thermal transport phenomena like thermal rectification in his laboratory. He recently led a research team that developed an unusual thermal diode made of polyethylene (PE) nanofiber that rectifies heat in both directions by changing the working temperature. This is significant because until now, achieving a large and adaptable rectification effect required a macroscale size or a great temperature bias. The findings were published in Nature Communications.

To read more, click here.