“At the age of between 12 and 15 I was drawing; I was making plans of fusion devices.”
David Fischer remembers growing up in Vienna, Austria, imagining how best to cool the furnace used to contain the hot soup of ions known as plasma in a fusion device called a tokamak. With plasma hotter than the core of the sun being generated in a donut-shaped vacuum chamber just a meter away from these magnets, what temperature ranges might be possible with different coolants, he wondered.
“I was drawing these plans and showing them to my father,” he recalls. “Then somehow I forgot about this fusion idea.”
Now starting his second year at the MIT Plasma Science and Fusion Center (PSFC) as a postdoc and a new Eni-sponsored MIT Energy Fellow, Fischer has clearly reconnected with the “fusion idea.” And his research revolves around the concepts that so engaged him as a youth.
Fischer’s early designs explored a popular approach to generating carbon-free, sustainable fusion energy known as “magnetic confinement.” Since plasma responds to magnetic fields, the tokamak is designed with magnets to keep the fusing atoms inside the vessel and away from the metal walls, where they would cause damage. The more effective the magnetic confinement the more stable the plasma can become, and the longer it can be sustained within the device.
Fischer is working on ARC, a fusion pilot plant concept that employs thin high-temperature superconductor (HTS) tapes in the fusion magnets. HTS allows much higher magnetic fields than would be possible from conventional superconductors, enabling a more compact tokamak design. HTS also allows the fusion magnets to operate at higher temperatures, greatly reducing the required cooling.
To read more, click here.