Current research and applications in the field of artificial intelligence (AI) include several key challenges. These include: (a) A priori estimation of the required dataset size to achieve a desired test accuracy. For example, how many handwritten digits does a machine have to learn before being able to predict a new one with a success rate of 99%? Similarly, how many specific types of circumstances does an autonomous vehicle have to learn before its reaction will not lead to an accident? (b) The achievement of reliable decision-making under a limited number of examples, where each example can be trained only once, i.e., observed only for a short period. This type of realization of fast on-line decision making is representative of many aspects of human activity, robotic control and network optimization.
In an article published today in the journal Scientific Reports, researchers show how these two challenges are solved by adopting a physical concept that was introduced a century ago to describe the formation of a magnet during a process of iron bulk cooling.
To read more, click here.