In 2018, a group of researchers at the Massachusetts Institute of Technology (MIT) pulled off a dazzling materials science magic trick. They stacked two microscopic cards of graphene—sheets of carbon one atom thick—and twisted one ever so slightly. Applying an electric field transformed the stack from a conductor to an insulator and then, suddenly, into a superconductor: a material that frictionlessly conducts electricity. Dozens of labs leapt into the newly born field of “twistronics,” hoping to conjure up novel electronic devices without the hassles of fusing together chemically different materials.

Two groups—including the pioneering MIT group—are now delivering on that promise by turning twisted graphene into working devices, including superconducting switches like those used in many quantum computers. The studies mark a crucial step for the material, which is already maturing into a basic science tool able to capture and control individual electrons and photons. Now, it’s showing promise as the basis of new electronic devices, says Cory Dean, a condensed matter physicist at Columbia University whose lab was one of the first to confirm the material’s superconducting properties after the 2018 announcement. “The idea that this platform can be used as a universal material is not fantasy,” he says. “It’s becoming fact.”

To read more, click here.