A change in perspective can work wonders. This has been especially true with respect to the paradigms for explaining material properties using the concept of topology, "ideas that are currently revolutionizing condensed matter physics," according to Tel Aviv University researcher Roni Ilan. While topological physics first emerged in condensed matter physics, the ideas have now spread into many other areas, including optics and photonics, as well as acoustics and other mechanical systems, where things have been getting a little tricky.

Although mechanical wave systems can offer valuable insights into the workings of , including topological phenomena, researchers taking this approach had hit a wall with Newton's third law of motion, which rules that every action must result in an equal and opposite reaction. Some quantum systems simply don't abide by this kind of reciprocity, making them difficult to emulate in mechanical systems. However, collaborators at Israel's Tel Aviv University have now found a way to mimic non-Newtonian behavior in mechanical systems, and thereby develop a mechanical implementation for some of the more intractable topological quantum systems, which may offer fundamentally new insights into both the mechanical and quantum topological systems.

To read more, click here.