Metamaterials (so called because of their engineered electromagnetic properties) hold great promise for new applications in the megahertz to terahertz bands, as well as optical frequencies. Examples including super-resolution imaging, cloaking, hyperlensing, and optical transformation. Conventional metamaterials are limited in their ability to demonstrate these phenomena because of their ohmic and dielectric losses and dissipation. However, a new class of metamaterials sidestep these problems and have the added benefit of being much smaller, more tunable, and more nonlinear than their ordinary counterparts.
To read the rest of the article, click here.