Note added by Jack:
Theoretical Breakthrough for Quantum Cryptography
That allows Alice and Bob to make any measurements they need without having to agree ahead of time on a frame of reference. There is one proviso: Alice and Bob cannot move too quickly during the measurements since this changes their relative orientation and a new qutrit will be needed to establish a reference.
That'll be useful for quantum encryption over satellite links, the kind of thing that government agencies and the military might want to do. But there's another, more valuable application.
If quantum encryption is ever to be widely used, it'll need to work between one microchip and another without the need to share a frame of reference in advance. That's always been a problem because the chips inside computers are constantly on the move (relative the the wavelength of light) and because photon polarisations drift as they move through optical fibres, introducing another source of error.
That's why quantum cryptography that is reference frame independent is an enabling technology and so potentially hugely valuable. It means that Laing and co may have made one of the key breakthroughs that will bring quantum cryptography to the masses."
Ref: arxiv.org/abs/1003.1050: Reference Frame Independent Quantum Key Distribution