Claiming that something can move faster than light is a good conversation-stopper in physics. People edge away from you in cocktail parties; friends never return phone calls. You just don't mess with Albert Einstein. So when I saw a press conference at the American Astronomical meeting this past January on faster-than-light phenomena in the cosmos, my first reaction was to say, Terribly sorry, but I really have to go now. Astrophysicists have been speaking of FTL motion for years, but it was always just a trick of the light that lent the impression of warp speed, a technicality of wave motion, or an exotic consequence of the expansion of the universe. These researchers were claiming a very different sort of trick. Dubious though I was, I put their press release in my "needs more thought" folder and today finally got around to taking a closer look. And what I've found is utterly fascinating.

To read the rest of the article, click here.

A new mechanism for generating broadband pulsar-like polarization

Abstract: Observational data imply the presence of superluminal electric currents in pulsar magnetospheres. Such sources are not inconsistent with special relativity; they have already been created in the laboratory. Here we describe the distinctive features of the radiation beam that is generated by a rotating superluminal source and show that (i) it consists of subbeams that are narrower the farther the observer is from the source: subbeams whose intensities decay as 1/R instead of 1/R^2 with distance (R), (ii) the fields of its subbeams are characterized by three concurrent polarization modes: two modes that are 'orthogonal' and a third mode whose position angle swings across the subbeam bridging those of the other two, (iii) its overall beam consists of an incoherent superposition of such coherent subbeams and has an intensity profile that reflects the azimuthal distribution of the contributing part of the source (the part of the source that approaches the observer with the speed of light and zero acceleration), (iv) its spectrum (the superluminal counterpart of synchrotron spectrum) is broader than that of any other known emission and entails oscillations whose spacings and amplitudes respectively increase and decrease algebraically with increasing frequency, and (v) the degree of its mean polarization and the fraction of its linear polarization both increase with frequency beyond the frequency for which the observer falls within the Fresnel zone. We also compare these features with those of the radiation received from the Crab pulsar.