The bright green energy future that surely awaits us exists in concept, but as we all know there are key pieces of technology that we still haven't quite figured out, like higher-capacity battery tech or better biofuel processing methods. Similarly, one of the key technology gaps hampering the U.S. energy grid is a lack of understanding regarding superconductors -- materials that can carry electricity with no energy loss. Now, DOE scientists may have cracked a critical part of the superconductor mystery, opening the door to a grid that can carry electrical current over great distances without drastic energy loss.

Superconductors only work at extremely low temperatures, rendering them practically useless because the energy used to cool them to those temps cancels out the benefit of no energy loss. For decades, researchers have tried to figure out why room-temperature semiconductors won't work. They knew it had something to do with electron behavior during the so-called pseudogap phase, a temp range where superconductivity breaks down.

Now, the researchers think they've figured it out. During the psuedogap phase, electrons undergo a change in copper-oxide semiconductors in which the tunneling ability of electrons is different in different oxygen atoms. To quote the awesomely named Séamus Davis, the project leader and lead author on the Nature article describing the research:

More on the recent breakthrough in understanding superconductivity.  To read the rest of the article, click here.