A Rice University-led team of physicists is reporting the first success in a three-year effort to build a precision simulator for superconductors using a grid of intersecting laser beams and ultracold atomic gas.
The research appears this week in the journal Nature. Using lithium atoms cooled to within a few billionths of a degree of absolute zero and loaded into optical tubes, the researchers created a precise analog of a one-dimensional superconducting wire.
Because the atoms in the experiment are so cold, they behave according to the same quantum mechanical rules that dictate how electrons behave. That means the lithium atoms can serve as stand-ins for electrons, and by trapping and holding the lithium atoms in beams of light, researchers can observe how electrons would behave in particular types of superconductors and other materials.
To read the rest of the article, click here.