As the electronics industry works toward developing smaller and more compact devices, the need to create new types of scaled-down semiconductors that are more efficient and use less power has become essential.

In a study to be published in the April issue of Nature Materials (currently available online), researchers from UCLA's Henry Samueli School of Engineering and Applied Science describe the creation of a new material incorporating spintronics that could help usher in the next generation of smaller, more affordable and more power-efficient devices.

While conventional complementary metal-oxide semiconductors (CMOS), a technology used today in all types of electronics, rely on electrons' charge to power devices, the emerging field of spintronics exploits another aspect of electrons — their spin, which could be manipulated by electric and magnetic fields.

"With the use of nanoscaled magnetic materials, spintronics or electronic devices, when switched off, will not have a stand-by power dissipation problem. With this advantage, devices with much lower power consumption, known as non-volatile electronics, can become a reality," said the study's corresponding author, Kang L. Wang, Raytheon Professor of Electrical Engineering at UCLA Engineering, whose team carried out the research. "Our approach provides a possible solution to address the critical challenges facing today's microelectronics industry and sheds light on the future of spintronics."

To read the rest of the article, click here.