This is an amazing experiment in more ways than one.
Abstract: The superconducting state is characterized by a pairing of electrons with a superconducting gap on the Fermi surface. In iron-based superconductors, an unconventional pairing state has been argued for theoretically. We used scanning tunneling microscopy on Fe(Se,Te) single crystals to image the quasi-particle scattering interference patterns in the superconducting state. By applying a magnetic field to break the time-reversal symmetry, the relative sign of the superconducting gap can be determined from the magnetic-field dependence of quasi-particle scattering amplitudes. Our results indicate that the sign is reversed between the hole and the electron Fermi-surface pockets (s±-wave), favoring the unconventional pairing mechanism associated with spin fluctuations.
T. Hanaguri et al., Science v.328, p.474 (2010).
Abstract: The superconducting state is characterized by a pairing of electrons with a superconducting gap on the Fermi surface. In iron-based superconductors, an unconventional pairing state has been argued for theoretically. We used scanning tunneling microscopy on Fe(Se,Te) single crystals to image the quasi-particle scattering interference patterns in the superconducting state. By applying a magnetic field to break the time-reversal symmetry, the relative sign of the superconducting gap can be determined from the magnetic-field dependence of quasi-particle scattering amplitudes. Our results indicate that the sign is reversed between the hole and the electron Fermi-surface pockets (s±-wave), favoring the unconventional pairing mechanism associated with spin fluctuations.
T. Hanaguri et al., Science v.328, p.474 (2010).
To read the rest of the artcile, click here.