During materials engineering, a network of tiny holes or pores can improve the energy storage capacity of materials for applications as smart windows. Smart windows are platforms whose light transmission properties can be altered when light, voltage or heat is applied. Scientists can control the fraction of light passing through the material using an electrical voltage to electrically switch from transparent to opaque materials during charge transfer. While this feature is associated with storage and release of energy, the same materials can be used for energy storage as well. In a new report, Jeon-Woo Kim and a team of scientists at the Pohang University of Science and Technology in South Korea developed and improved electrochromic supercapacitors made from tungsten trioxide (WO3). They used an evaporation-induced self-assembly process to deposit a film of tungsten trioxide with pores, where the porous architecture increased the speed of switching and capacitance in the material compared to conventional tungsten trioxide thin films. The work is now published on Nature Asia Materials.

To read more, click here.