Ever since their discovery, quasicrystals have garnered much attention due to their strange structure. Today, they remain far from being well-understood. In a new study, scientists reveal, for the first time, a unique shifting surface atomic structure in a material emulating quasicrystals, opening doors to the better understanding of magnetic and superconducting properties of quasicrystals, and potential applications in semiconductor film growth.

Between chemistry classes, gemstones, and electronics, the idea of crystals, substances with an ordered and periodic arrangement of atoms is quite common. But about 40 years ago, a strange particle was discovered by scientists that hasn't become commonplace in our world yet: quasicrystals. These are structures with curious atomic arrangements, which, while superficially similar to crystals, lack periodicity despite being ordered. Because of their structures, quasicrystals exhibit symmetries forbidden to crystals and are endowed with interesting properties that crystals cannot show, such as high resistance to heat flow, current flow, and corrosion.

To read more, click here.