According to the second law of thermodynamics, heat will always move from hot to cold until it is spread evenly and can’t be tapped to do useful work. Yet it is possible to subvert the second law briefly, as the 19th century thought experiment known as Maxwell’s demon demonstrates. Researchers have now come up with a new way to do this that requires minimal intervention in the system [1]. It involves finding good gambling strategies to exploit chance fluctuations in particle motions and extract useful work, and the team implemented their approach in a nanoscale electronic device. They say that the approach might be used to improve the efficiency of microscopic heat engines and motors.

To read more, click here.