By using laser spectroscopy in a photophysics experiment, Clemson University researchers have broken new ground that could result in faster and cheaper energy to power electronics.
This novel approach, using solution-processed perovskite, is intended to revolutionize a variety of everyday objects such as solar cells, LEDs, photodetectors for smart phones and computer chips. Solution-processed perovskite are the next generation materials for solar cell panels on rooftops, X-ray detectors for medical diagnosis, and LEDs for daily-life lighting.
The research team included a pair of graduate students and one undergraduate student who are mentored by Jianbo Gao, group leader of Ultrafast Photophysics of Quantum Devices (UPQD) group in the College of Science's Department of Physics and Astronomy.
The collaborative research was published March 12 in the high-impact journal Nature Communications. The article is titled "In-situ Observation of Trapped Carriers in Organic Metal Halide Perovskite Films with Ultra-fast Temporal and Ultra-high Energetic Resolutions."
To read more, click here.