Water is abundant in the solar system. Even beyond Earth, scientists have detected ice on the moon, in Saturn's rings and in comets, liquid water on Mars and under the surface of Saturn's moon Enceladus, and traces of water vapor in the scorching atmosphere of Venus. Studies have shown that water played an important role in the early evolution and formation of the solar system. To learn more about this role, planetary scientists have searched for evidence of liquid water in extraterrestrial materials such as meteorites, most of which originate from asteroids that formed in the early history of the solar system.

Scientists have even found water as hydroxyls and molecules in meteorites in the context of hydrous minerals, which are basically solids with some ionic or molecular water incorporated within them. Dr. Akira Tsuchiyama, Visiting Research Professor at Ritsumeikan University, says, "Scientists further expect that should remain as in minerals that precipitated in aqueous fluid" (or, to put it simply, formed from drops of water that contained various other things dissolved inside them). Scientists have found such liquid water inclusions inside salt crystals located within a class of meteorites known as ordinary chondrites, which represent the vast majority of all meteorites found on Earth though the salt actually originated from other, more primitive parent objects.

Prof. Tsuchiyama and his colleagues wanted to know whether liquid water inclusions are present in a form of calcium carbonate known as calcite within a class of meteorites known as "carbonaceous chondrites," which come from asteroids that formed very early in the history of the solar system. They therefore examined samples of the Sutter's Mill , a carbonaceous chondrite originating in an asteroid that formed 4.6 billion years ago. The results of their investigation, led by Prof. Tsuchiyama, appear in an article recently published in the prestigious journal Science Advances.

To read more, click here.