Simon Fraser University researchers have designed a remarkably fast engine that taps into a new kind of fuel—information.
The development of this engine, which converts the random jiggling of a microscopic particle into stored energy, is outlined in research published this week in the Proceedings of the National Academy of Sciences (PNAS) and could lead to significant advances in the speed and cost of computers and bio-nanotechnologies.
SFU physics professor and senior author John Bechhoefer says researchers' understanding of how to rapidly and efficiently convert information into "work" may inform the design and creation of real-world information engines.
"We wanted to find out how fast an information engine can go and how much energy it can extract, so we made one," says Bechhoefer, whose experimental group collaborated with theorists led by SFU physics professor David Sivak.
Engines of this type were first proposed over 150 years ago, but actually making them has only recently become possible.
To read more, click here.